T-type calcium channels are regulated by hypoxia/reoxygenation in ventricular myocytes.

نویسندگان

  • Florentina Pluteanu
  • Leanne L Cribbs
چکیده

Low-voltage-activated calcium channels are reexpressed in ventricular myocytes in pathological conditions associated with hypoxic episodes, but a direct relation between oxidative stress and T-type channel function and regulation in cardiomyocytes has not been established. We aimed to investigate low-voltage-activated channel regulation under oxidative stress in neonatal rat ventricular myocytes. RT-PCR measurements of voltage-gated Ca(2+) (Ca(v))3.1 and Ca(v)3.2 mRNA levels in oxidative stress were compared with whole cell patch-clamp recordings of T-type calcium current. The results indicate that hypoxia reduces T-type current density at -30 mV (the hallmark of this channel) based on the shift of the voltage dependence of activation to more depolarized values and downregulation of Ca(v)3.1 at the mRNA level. Upon reoxygenation, both Ca(v)3.1 mRNA levels and the voltage dependence of total T-type current are restored, although differently for activation and inactivation. Using Ni(2+), we distinguished different effects of hypoxia/reoxygenation on the two current components. Long-term incubation in the presence of 100 microM CoCl(2) reproduced the effects of hypoxia on T-type current activation and inactivation, indicating that the chemically induced oxidative state is sufficient to alter T-type calcium current activity, and that hypoxia-inducible factor-1alpha is involved in Ca(v)3.1 downregulation. Our results demonstrate that Ca(v)3.1 and Ca(v)3.2 T-type calcium channels are differentially regulated by hypoxia/reoxygenation injury, and, therefore, they may serve different functions in the myocyte in response to hypoxic injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of reoxygenation injury in cultured ventricular myocytes.

To investigate factors contributing to reperfusion and reoxygenation myocardial injury, we exposed layers of cultured chick ventricular myocytes to severe hypoxia for up to 3 hours in the presence of 20 mM 2-deoxyglucose, zero glucose, and 5 mM pyruvate, and then exposed the myocytes to reoxygenation. Lactate dehydrogenase (LDH) release was moderately increased during 3 hours of hypoxia but was...

متن کامل

Subcellular electrolyte alterations during progressive hypoxia and following reoxygenation in isolated neonatal rat ventricular myocytes.

This study characterizes the sequential alterations of, and relations between, multiple electrolytes in cytoplasm, mitochondria, and whole cells during hypoxia and on reoxygenation in isolated neonatal rat ventricular myocytes. Subcellular electrolyte content and distribution were measured by electron probe x-ray microanalysis, membrane phospholipid degradation by tritiated arachidonic acid rel...

متن کامل

A cellular mechanism for impaired posthypoxic relaxation in isolated cardiac myocytes. Altered myofilament relaxation kinetics at reoxygenation.

Single, isolated rat ventricular myocytes were made hypoxic for 10 minutes and then reoxygenated. During hypoxia, there was a marked abbreviation of the mechanical twitch, without a decrease in its amplitude. Immediately after reoxygenation, both the time to peak shortening and the duration of relaxation were markedly prolonged, and they remained prolonged for 10-50 minutes. The alterations in ...

متن کامل

Distinct myoprotective roles of cardiac sarcolemmal and mitochondrial KATP channels during metabolic inhibition and recovery.

The protective roles of sarcolemmal (sarc) and mitochondrial (mito) KATP channels are unclear despite their apparent importance to ischemic preconditioning. We examined these roles by monitoring intracellular calcium ([Ca]int), using fura-2 and fluo-3, in enzymatically isolated rat right ventricular myocytes. Myocyte mortality, estimated using a trypan blue assay, changed approximately in paral...

متن کامل

N-n-Butyl Haloperidol Iodide Ameliorates Cardiomyocytes Hypoxia/Reoxygenation Injury by Extracellular Calcium-Dependent and -Independent Mechanisms

N-n-butyl haloperidol iodide (F2) has been shown to antagonize myocardial ischemia/reperfusion injury by blocking calcium channels. This study explores the biological functions of ERK pathway in cardiomyocytes hypoxia/reoxygenation injury and clarifies the mechanisms by which F2 ameliorates cardiomyocytes hypoxia/reoxygenation injury through the extracellular-calcium-dependent and -independent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 297 4  شماره 

صفحات  -

تاریخ انتشار 2009